Locally adaptive change-point detection (LACPD) with applications to environmental changes

نویسندگان

چکیده

Abstract We propose an adaptive-sliding-window approach (LACPD) for the problem of change-point detection in a set time-ordered observations. The proposed method is combined with sub-sampling techniques to compensate lack enough data near time series’ tails. Through simulation study, we analyse its behaviour presence early/middle/late mean, and compare performance some frequently used recently developed methods terms power, type I error probability, area under ROC curves (AUC), absolute bias, variance, root-mean-square (RMSE). conclude that LACPD outperforms other by maintaining low probability. Unlike methods, does not depend on index change-points, it generally has lower bias than alternative methods. Moreover, variance RMSE, when change-points are close tails, whereas shows similar (sometimes slightly poorer) as middle series. Finally, apply our proposal two sets real data: well-known example annual flow Nile river Awsan, Egypt, from 1871 1970, novel remote sensing application consisting 34-year time-series satellite images Normalised Difference Vegetation Index Wadi As-Sirham valley, Saudi Arabia, 1986 2019. good detecting change well magnitude conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fixed point property for banach algebras associated to locally compact groups

در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...

15 صفحه اول

Monitoring adaptive genetic responses to environmental change.

Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis of the same populations o...

متن کامل

Adaptive Sliding Kalman Filter using Nonparametric Change Point Detection

This paper aims to develop an Adaptive Sliding Kalman Filter (ASKF) by fusing the concept of change detection in a data stream, adapting noise covariance matrices and the Sliding Kalman filter (SKF). Adaptive Kalman filtering (AKF) scheme modifies the noise covariance matrix (Q and R) value based on a window of past innovation sequence whereas SKF is a window based filtering technique which use...

متن کامل

Multiscale Local Change Point Detection with Applications to Value - at - Risk

This paper offers a new approach to modeling and forecasting of nonstationary time series with applications to volatility modeling for financial data. The approach is based on the assumption of local homogeneity: for every time point, there exists a historical interval of homogeneity, in which the volatility parameter can be well approximated by a constant. The proposed procedure recovers this ...

متن کامل

Segmental Semi-Markov Models for Change-Point Detection with Applications to Semiconductor Manufacturing

We formulate the problem of change-point detection in a segmental semi-Markov model framework where a change-point corresponds to state switching. The semi-Markov part of the model allows us to incorporate prior knowledge about the time of change in a Bayesian manner. The segmental part of the model allows exible modeling of the data within individual segments, e.g., as linear, quadratic, or ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Environmental Research and Risk Assessment

سال: 2021

ISSN: ['1436-3259', '1436-3240']

DOI: https://doi.org/10.1007/s00477-021-02083-0